
Application Report
SPRA820 – May 2003

1

Online Stack Overflow Detection on the TMS320C28x DSP
David M. Alter DSP Applications – Semiconductor Group

ABSTRACT

A stack overflow in an embedded DSP application generally produces a catastrophic
software crash due to data corruption, lost return addresses, or both. Traditional off-line
approaches to sizing a stack during development, such as filling with a know value, or
estimating based on code content, are not 100% reliable. Therefore, programmers often
feel compelled to reserve larger stack sizes than are actually needed. This wastes
valuable memory resources. Facilities exist on the TMS320C28x™ DSP that, when
properly configured, allow for runtime detection of a stack overflow before it occurs.
Detection of an impending stack overflow triggers a maskable interrupt, and software can
then take whatever corrective action is desired before a software crash occurs. This
application report presents the methodology for online stack overflow detection on the
TMS320C28x DSP. C-source code is provided that contains functions for implementing
the overflow detection on both DSP/BIOS™ and non-DSP/BIOS applications.

TMS320C28x and DSP/BIOS are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA820

2 Online Stack Overflow Detection on the TMS320C28x DSP

Contents
1 Introduction.. 3
2 The C28x Emulation Analysis Block... 4

2.1 Analysis Block Watchpoint Registers.. 5
2.2 Watchpoint Register Configuration Procedure.. 8

3 Configuring a Watchpoint for Stack Overflow Detection .. 9
3.1 Determining the Watchpoint Location and Range in Memory ... 9
3.2 Watchpoint Registers Values.. 11

4 Application Issues ... 12
4.1 Non-DSP/BIOS Applications .. 13
4.2 DSP/BIOS Applications .. 14

5 Conclusion ... 16
6 References ... 16
Appendix A. C Function APIs ... 17
Appendix B. C Code Functions .. 22

B.1 stkov_systemstack.c .. 22
B.2 stkov_taskstack.c ... 25
B.3 stkov.h ... 29

Appendix C. Troubleshooting Analysis Block Resource Conflicts.. 31
C.1 Hardware Breakpoints.. 31
C.2 Real-time Analysis Tools .. 33
C.3 Code Profiler .. 35
C.4 Resetting the Emulator ... 35

Figures
Figure 1. Stack Overflow Monitoring ... 4
Figure 2. Watchpoint Range in Relation to the Stack in Memory .. 11
Figure 3. Specifying the Task Hook Functions in Code Composer Studio v2.20 15

Tables
Table 1. C28x Analysis Block Watchpoint Registers .. 5

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 3

1 Introduction

A stack overflow in an embedded DSP application generally produces a catastrophic software
crash due to data corruption, lost return addresses, or both. The traditional approach to
avoiding stack overflow is to perform offline testing during software development. Typically, a
stack will be comfortably oversized, and the entire stack memory filled with some known data
value using a code debugger. The application software will then be run over some period of
time (e.g. hours, days, or sometimes even weeks). At the end of the run period, the stack
memory is examined using the code debugger. The unused portion of the stack will still contain
the pre-filled data value, and thus the amount of stack used by the application is readily
apparent. A factor of safety can then be applied, and a final stack size determined. While this
offline method of stack sizing is invaluable as a first pass approach, it does not eliminate the
possibility of a stack overflow occurring at runtime. Programmers may therefore use a larger
stack than they might actually need, which can waste valuable on-chip RAM resources.

Facilities exist on the TMS320C28x DSP (hereafter referred to as the C28x™) that, when
properly configured, allow runtime detection of a stack overflow before it occurs. When the
(incrementing) stack pointer exceeds a specified address before the end of the stack, a
maskable interrupt is triggered (the RTOSINT interrupt). Software can then take corrective
action to prevent an application crash. The choice of action taken is solely up to the user, and
should be suitable for the particular application at hand. For example, one might choose to
simply perform a controlled shutdown, or perhaps restart the code by performing a DSP reset.
Alternately, certain applications might allow one to throttle back the number of duties being
performed until the stack usage reduces to a safer level. One should remember that a stack
overflow is not caused by a bug in the code, but rather is due to a stack that has been sized too
small for the worst-case demands of the application.

The on-chip resource that enables stack overflow detection on the C28x DSP is known as the
emulation analysis block. Although primarily intended for use by the Code Composer Studio™
debugger, the analysis block registers are accessible to software and therefore can also be
utilized by application code. The analysis block monitors the internal address and data buses,
and triggers the RTOSINT interrupt when a specified bus and mask matches a specified value.
Hence, the basic approach for detecting stack overflow will be to configure the analysis block to
trigger an interrupt when the data write address bus falls within some range prior to the end of a
stack. This is illustrated in Figure 1. Since this memory is reserved for stack usage only, a data
write within the specified address range indicates that the stack usage is approaching its
allocated size limit.

The stack overflow detection technique described in this report applies applications using the
DSP/BIOS real-time operating system, as well as non-DSP/BIOS applications. In the case of a
non-DSP/BIOS application, there is generally only a single stack (e.g., the stack used by the
C/C++ compiler). A single watchpoint monitoring the stack is therefore sufficient. In the case of
a DSP/BIOS application, there are multiple stacks: a single system stack (analogous to the
single stack used by non-DSP/BIOS applications), and a stack for each DSP/BIOS task object.
Here, a single watchpoint will be configured to monitor the system stack, and a second
watchpoint will be configured to monitor the task stacks. This second watchpoint will be
dynamically reconfigured each time a task switch occurs such that it is always monitoring the
stack of the currently active task.

C28x and Code Composer Studio are trademarks of Texas Instruments.

SPRA820

4 Online Stack Overflow Detection on the TMS320C28x DSP

Figure 1. Stack Overflow Monitoring

2 The C28x Emulation Analysis Block

The emulation analysis block in the C28x DSP core has extensive capabilities, most of which
are intended for use by the Code Composer Studio debugger. Documenting the entire analysis
block is beyond the scope of this application report, and therefore only the resources needed to
perform stack overflow detection will be covered. Additional information can be found in
reference [1].

Performing stack overflow detection requires use of one or both of the analysis units in the
analysis block. The analysis units are utilized as hardware watchpoints (denoted as WP0 for
watchpoint 0, and WP1 for watchpoint 1). A watchpoint triggers when either an address bus, or
both an address bus and a data bus match what they are being compared against. The address
portion is compared against a reference address and bit mask, and the data portion is compared
against a reference data value and a different bit mask. If only addresses are to be compared,
two watchpoints can be set; if both address and data are to be compared, only one watchpoint
can be set. When an emulator is connected to the DSP and Code Composer Studio is active, a
triggered watchpoint can cause the debugger to take certain action (e.g. halt the DSP).
However, a triggered watchpoint also causes a RTOSINT interrupt, and this interrupt can be
utilized by software even if no emulator is connected. Note that the RTOSINT is a maskable
interrupt. It must be enabled in the interrupt enable register (IER), and the global interrupt mask
bit must be cleared in status register 1 (INTM bit in ST1), or the interrupt will not be serviced.

Data Memory

Monitor for data writes
near the end of the stack

Region of
memory

occupied by
the stack

Stack grows
towards higher
memory
addresses

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 5

2.1 Analysis Block Watchpoint Registers

The analysis block registers are data memory mapped, and may be accessed from code in the
same way as any other data variable. A description of the various registers and their bits
follows.

CAUTION:
Read the register bit descriptions very carefully. Some of the bit settings are
not intuitive. Also, whereas the bit fields for the MASKxx and REFxx registers of
WP0 and WP1 are the same, subtle differences exist in the bit fields for the
EVT0_CNTL and EVT1_CNTL registers (such as the buses selected by bits 4-2),
and also for the EVT0_ID and EVT1_ID registers.

Table 1. C28x Analysis Block Watchpoint Registers

Address Register Description

0x0828 MASK1L Lower 16-bits of WP1 address mask

0x0829 MASK1H Upper 16-bits of WP1 address mask

0x082A REF1L Lower 16-bits of WP1 base address

0x082B REF1H Upper 16-bits of WP1 base address

0x082E EVT1_CNTL WP1 event control register

0x082F EVT1_ID WP1 event ID register

0x0848 MASK0L Lower 16-bits of WP0 address mask

0x0849 MASK0H Upper 16-bits of WP0 address mask

0x084A REF0L Lower 16-bits of WP0 base address

0x084B REF0H Upper 16-bits of WP0 base address

0x084E EVT0_CNTL WP0 event control register

0x084F EVT0_ID WP0 event ID register

Note: All of the above registers are EALLOW protected.

MASK0L and MASK1L Registers

Bits 15-0: Contain the lower 16-bits of the corresponding watchpoint address mask. Set
address bits to be masked (i.e., ignored) to 1, all non-masked (i.e., used) bits to 0.

SPRA820

6 Online Stack Overflow Detection on the TMS320C28x DSP

MASK0H and MASK1H Registers

Bits 15-0: Contain the upper 16-bits of the corresponding watchpoint address mask. Set
address bits to be masked (i.e., ignored) to 1, all non-masked (i.e., used) bits to 0.

REF0L and REF1L Registers

Bits 15-0: Contain the lower 16-bits of the corresponding watchpoint address. Set address bits
being masked (i.e., ignored) to 1, all other bits to the desired address value.

REF0H and REF1H Registers

Bits 15-0: Contain the upper 16-bits of the corresponding watchpoint address. Set address
bits being masked (i.e., ignored) to 1, all other bits to the desired address value.

EVT0_CNTL Register

Bits 15-13: Write as 000b

Bits 12-11: 00b - Reserved

 01b - Write watchpoint

 10b - Read watchpoint

 11b - Reserved

Bit 10: Write as 0

Bit 9: Set to 1 to require the external event qualifier, DEXTQ, to be active. Else set to 0.

Bit 8: Write as 0

Bit 7: Set to 1 to automatically re-arm the watchpoint after triggering. Set to 0 for single-
shot operation.

Bit 6: Write as 1

Bit 5: Write as 0

Bits 4-2: 000b - Monitor program reads and writes on the program address bus (PAB)

 001b - Monitor data reads on the data read address bus (DRAB)

 010b - Monitor data writes on the data write address bus (DWAB)

 All other bit settings are reserved.

Bits 1-0: 00b - Release an owned watchpoint

 01b - Claim ownership of the watchpoint (or disable an owned watchpoint)

 10b - Enable an owned watchpoint

 11b - Reserved

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 7

EVT1_CNTL Register

Bits 15-13: Write as 000b

Bits 12-11: 00b - Reserved

 01b - Write watchpoint

 10b - Read watchpoint

 11b - Reserved

Bit 10: Write as 0

Bit 9: Set to 1 to require the external event qualifier, AEXTQ, to be active. Else set to 0.

Bit 8: Write as 0

Bit 7: Set to 1 to automatically re-arm the watchpoint after triggering. Set to 0 for single-
shot operation.

Bit 6: Write as 1

Bit 5: Write as 0

Bits 4-2: 010b - Monitor program reads and writes on the program address bus (PAB)

 100b - Monitor data reads on the data read address bus (DRAB)

 110b - Monitor data writes on the data write address bus (DWAB)

 All other bit settings are reserved.

 Bits 1-0: 00b - Release an owned watchpoint

 01b - Claim ownership of the watchpoint (or disable an owned watchpoint)

 10b - Enable an owned watchpoint

 11b - Reserved

EVT0_ID Register (read-only)

Bits 15-14: 00b - Watchpoint is unclaimed

 01b - The application software owns the watchpoint

 10b - The debugger owns the watchpoint

 11b - Reserved

Bits 13-0: These bits will always read as 0x1002 (01 0000 0000 0010b)

SPRA820

8 Online Stack Overflow Detection on the TMS320C28x DSP

EVT1_ID Register (read-only)

Bits 15-14: 00b - Watchpoint is unclaimed

 01b - The application software owns the watchpoint

 10b - The debugger owns the watchpoint

 11b - Reserved

Bits 13-0: These bits will always read as 0x1001 (01 0000 0000 0001b)

2.2 Watchpoint Register Configuration Procedure

Analysis block resources may be used by both the application and the Code Composer Studio
debugger. To avoid resource contention, the following protocol must be followed by application
software when making use of the watchpoints in the analysis block.

1. Execute an EALLOW assembly instruction to enable writes to the analysis block registers.
With C code, one should use inline assembly:

 asm(" EALLOW");

2. Set EVTx_CNTL[1:0] to 01b to attempt to claim ownership of the watchpoint.

3. Wait at least three cycles for the write to EVTx_CNTL[1:0] to occur in the CPU pipeline.
During this time, instructions that don’t involve accessing the analysis block registers can
be executed, or more simply just execute three NOP instructions. The most compact C
code to do this uses inline assembly:

 asm(" RPT #1 || NOP"); /* 3 cycles, 2 words */

4. Read the EVTx_ID register and verify that the application is the owner of the watchpoint
by checking bits 15-14. The application must be the owner before proceeding. If the
application is not the owner, software must either retry from step #2, or abort the attempt
to setup the watchpoint (depends on how the user would like to handle this in software).
When the emulator is not being used (i.e. the final product, after code development), there
is no reason why the application should not achieve ownership. When the emulator is
being used (e.g. during code development) the application could fail to achieve ownership
if the Code Composer Studio debugger is already using the emulation analysis unit that
corresponds to the requested watchpoint. Appendix C provides some troubleshooting
assistance in the event that a Code Composer Studio conflict does arise.

5. Once the application owns the watchpoint, the registers for that watchpoint can be
programmed. Specifically, REFxL, REFxH, MASKxL, MASKxH, and EVTx_CNTL must be
configured. The last register one should configure is the EVTx_CNTL register, where bits
1-0 should be set to 10b to enable the watchpoint. Note that if the application does not
own the watchpoint, software writes to all the watchpoint registers are ignored.

6. Execute an EDIS assembly instruction to disable writes to the analysis block registers.
With C code, one should use inline assembly:

 asm(" EDIS");

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 9

3 Configuring a Watchpoint for Stack Overflow Detection

The C28x emulation analysis block provides for the monitoring of the data read address bus or
the data write address bus. Since the stack pointer (SP) uses these two buses when making
data accesses to the stack, stack overflow detection can be performed by configuring a
watchpoint to monitor for data write activity occurring near the end of stack memory. Watching
data write activity as opposed to data read activity is justified since it is reasonable to assume
that properly functioning code would perform a push onto the stack (i.e., a write operation)
before attempting to pop that data off the stack (i.e., a read operation). Erroneously reading
data from locations past the end of the stack when no previous write has occurred, although
certainly a problem, is more indicative of a code bug rather than a stack overflow.

3.1 Determining the Watchpoint Location and Range in Memory

Ideally, one would want the watchpoint to trigger whenever a write occurred to the stack memory
at an address greater than some reference address (as opposed to exactly matching the
reference address). The reference address would be set some number of words before the
actual end of the stack in order to provide the application with sufficient time to take corrective
action. In this way, any stack activity in the memory range between the reference address and
the actual stack end would trigger the watchpoint. However, the C28x watchpoints do not allow
the specification of an arbitrary address range. Rather, they allow only a reference address
(REFxL and REFxH registers) and a bit mask (MASKxL and MASKxH registers) to be applied to
this address. Therefore, one must utilize the bit mask to implement a suitable address range.

A bit mask provides the ability to specify a range of size 2^N, aligned on a N-bit boundary in
memory (where N = 0, 1, 2, ...). With this in mind, let's examine the two quantities needed in
order to locate the watchpoint range in memory: the starting address of the range prior to the
stack end, and the size of the range. Let's first consider the starting address of the range. Once
the watchpoint triggers, there must be enough space left on the stack for any stack pushes that
might occur before the RTOSINT is serviced (at which point the software takes corrective
action). The C28x DSP automatically saves 14 registers (16-bit words) onto the stack when an
interrupt occurs. The worst-case situation then is when an interrupt occurs, and the first of the
automatically saved words causes the watchpoint to trigger. The stack must have sufficient
space for the following:

� The 14 automatically saved words for the triggering interrupt

� The 14 automatically saved words for the RTOSINT caused by the watchpoint

� Up to 6 32-bit stack writes (pushes) that could already be in the CPU pipeline when the
triggered interrupt occurs. This equates to 12 words of space. Although the likelihood
of having 6 consecutive 32-bit pushes in source code is small, it is a worse-case
situation none the less.

� Any stack space needed by the RTOSINT interrupt service routine (ISR)

SPRA820

10 Online Stack Overflow Detection on the TMS320C28x DSP

Adding together these requirements, one sees that the watchpoint should trigger a minimum of
40 words prior to the end of a stack (neglecting the requirements of the RTOSINT ISR, which is
software specific). Keep in mind that the aim of stack overflow detection is to provide a last line
of defense against unforeseen stack overflow. The needed stack sizes for an application should
have previously been determined during code development using, for example, the offline
approach previously discussed in this report. The stack overflow detection discussed here is not
intended to be part of the normal software flow. In general, the actions taken by the stack
overflow routine will be relatively drastic (e.g. safe shutdown). Hence, one will not want the
watchpoint to trigger too much earlier than is needed to safely take corrective action before
stack overflow occurs. Setting the watchpoint too far before the end of the stack simply wastes
memory, as the memory occurring at addresses after the watchpoint cannot be utilized by the
application.

The size of the watchpoint range must be large enough to ensure that accesses into the stack
don't accidentally skip over the monitored addresses (e.g., because of manual stack pointer
manipulation that skips some number of stack locations, or 32-bit stack pushes where only the
even address goes out on the address bus). The downside of using too large a range is that the
start of the range must be aligned on an N-bit boundary, and therefore larger ranges may need
to have their starting address shifted significantly from the specified reference address in order
to achieve alignment. This can further waste memory by reducing the amount of available stack
space before the watchpoint triggers. In general, stack growth on the C28x DSP is sequential,
with no skipped spaces, so a fairly small range size may be used. It is recommended that a
range size of 8 or 16 be used (recall that the range size is specified as a bit mask, and therefore
must be of size 2^N). This is small enough to avoid significant alignment shifting, and large
enough to handle unforeseen stack pointer manipulation issues.

Let's look at a configuration example:

stack start address = 0x00008123

stack end address = 0x00008523 (i.e., stack length is 0x400 words)

specified overflow range = 8 (i.e., the range mask is 0x0007)

specified range starting distance from end of stack = 45 words

The calculation to determine the aligned starting address of the watchpoint range is the stack
end address minus the specified range starting distance, and then AND'd with the Boolean 1's
compliment of the range mask. In other words:

aligned address = (stack end - specified range starting distance) AND (~mask)

 = (0x00008523 - 45) & (~0x0007)

 = (0x000084F6) & (0xFFF8)

 = 0x000084F0

Hence, the watchpoint will monitor addresses in the range 0x000084F0 to 0x000084F7,
inclusive. Figure 2 shows the relationship between the various addresses and the watchpoint
range in memory. Notice that the starting address of the range is actually 51 words before the
end of the stack. This is 6 words more than the specified distance of 45 words. The additional 6
words were needed to keep the monitored range aligned on an N-bit boundary.

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 11

Figure 2. Watchpoint Range in Relation to the Stack in Memory
 (numerical values refer to specific example given in the text)

3.2 Watchpoint Registers Values

Given a desired aligned starting address and range mask, the following section presents the
needed bit settings in the relevant watchpoint registers.

MASKxL and MASKxH Registers

The range mask is simply written to the MASKxL and MASKxH registers as is. Since these
registers occupy consecutive addresses in the memory map, a single 32-bit write can be used to
write the range mask.

REFxH and REFxL Registers

The aligned reference address should be OR'd with the mask range, and then written to the
REFxH and REFxL registers. This is because of how the reference registers are designed: all
address bits that will be masked by the contents of the mask registers should be written as 1's.
Since these registers occupy consecutive addresses in the memory map, a single 32-bit write
can be used to write the range mask.

aligned starting address of range (0x000084F0)

specified starting address of range (0x000084F6)
first address after aligned range (0x000084F8)

St
ac

k
gr

ow
s

to
w

ar
d

hi
gh

er

da
ta

 m
em

or
y

ad
dr

es
se

s

stack starting address (0x00008123)

stack ending address (0x00008523)

monitored
range

51

45

8 6

unmonitored

unmonitored

SPRA820

12 Online Stack Overflow Detection on the TMS320C28x DSP

EVTx_CNTL Register

EVTx_CNTL[15:13]: These bits should always be written as zeros.

EVTx_CNTL[12:11]: These bits should be configured for "Write watchpoint" (01b).

EVTx_CNTL[10]: This bit should always be written as zero.

EVTx_CNTL[9]: Setting this bit to 1 gates the watchpoint trigger with an additional external event
qualifier signal: DEXTQ for EXT0_CNTL, and AEXTQ signal for EVT1_CNTL. The intent of this
is to allow an external device to control the watchpoint activity (e.g., to keep some time critical
code from getting interrupted). However, these signals are internally tied off on in an inactive
state on the TMS320F2812 and TMS320F2810 DSP devices. Therefore, this bit should be set
to 0 (or the watchpoint trigger will never occur). If using a different C28x device, consult the
device datasheet to see if DEXTQ and AEXTQ signals are pinned out in the (unusual) event that
this capability is needed.

EVTx_CNTL[8]: This bit should always be written as zero.

EVTx_CNTL[7]: In general, this bit should be set to a 1 for single-shot operation of the
watchpoint. The application can re-arm the watchpoint, if desired, after it takes corrective action.

EVTx_CNTL[6]: This bit should always be written as one.

EVTx_CNTL[5]: This bit should always be written as zero.

EVTx_CNTL[4:2]: Since writes to the stack are of interest here, and since these writes are
always performed as data memory writes (as opposed to program memory writes using the
PWRITE assembly code instruction), one should set these bits to monitor the data write address
bus (DWAB). The binary value for this settings is different between WP0 (use 010b for data
write) and WP1 (use 110b for data write). Be sure to carefully check the required setting in
Section 2.1.

EVTx_CNTL[1:0]: The description for these bits is self-explanatory. Set to 01b to attempt to
claim ownership of the watchpoint (or to disable an already owned watchpoint). Set to 10b to
enable an owned watchpoint. There is generally little need for an application to release an
owned watchpoint (the 00b setting).

4 Application Issues

Instructions have so far been provided on how to configure the watchpoint for stack overflow
detection given the stack end address. What remains to be shown is how user code can
determine the stack end address at run time, and in the case of DSP/BIOS applications, how to
configure the watchpoints to handle the multiple stacks used by the software.

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 13

4.1 Non-DSP/BIOS Applications

The C28x C/C++ compiler employs a single stack. During the C-environment setup performed
by the compiler runtime support library (e.g., rts2800.lib or rts2800_ml.lib), the SP is initialized to
the beginning of the allocated stack memory, and remains pointed to somewhere in the stack
memory throughout execution of the code. Barring any manual relocation of the SP by the user
at the assembly code level, it is sufficient to statically configure a single watchpoint to monitor
the end of the C/C++ stack.

The C/C++ compiler allocates the stack in a section called .stack. Since the link address of the
.stack section is specified in the linker command file of the code project, and since the stack
length is specified by the user as a Code Composer Studio project option, one could compute
the end address of the stack and hard-code the address at which to set the watchpoint into their
application. However, this is not a particularly elegant nor easily maintainable solution. A better
method is to have the linker generate a symbol for the ending address of the .stack section, and
then have software utilize this symbol. It may also be useful to have a symbol for the starting
address of the stack section for error correction purposes (e.g., to determine if any portion of the
watchpoint range lies outside the stack memory). The C28x linker has the capability to
automatically generate such global symbols as follows. Suppose one wants to link the .stack
section to some memory called "RAM" that has already been defined on PAGE 1 in the
MEMORY section of the linker command file. The following SECTIONS entry in the linker
command file will achieve this:

SECTIONS
{
 .stack: RUN = RAM,
 RUN_START(_HWI_STKBOTTOM),
 RUN_END(_HWI_STKTOP),
 PAGE = 1
}

The above defines symbols _HWI_STKBOTTOM and _HWI_STKTOP representing the start and
end addresses in memory of the .stack section (these symbol names are just examples, and the
reader is free to change them). Note that the end address is actually the first address after the
last word of the stack. Three items of importance:

1. Notice the use of the leading underscore in the symbol names. This allows the symbols to
be accessed from C code using just HWI_STKBOTTOM and HWI_STKTOP, as C
automatically appends a leading underscore to all symbol names.

2. These symbols actually represent the 16-bit values that exist on the stack at its starting
and ending addresses. It is the addresses of these symbols that represent the start and
end address of the stack. Therefore, an ampersand should be used in C code to denote
the symbol address, e.g. &HWI_STKBOTTOM.

3. To access these symbols from C source code, they must be declared as external global
symbols for unsigned integer (16 bit) values in any source file that uses them.

A simple example of how to incorporate these symbols in C source code is as follows.

SPRA820

14 Online Stack Overflow Detection on the TMS320C28x DSP

/* C28x DSP C Code example to access the stack symbols */

extern unsigned int HWI_STKBOTTOM;
extern unsigned int HWI_STKTOP;

void MyFunc(void)
{
 unsigned long x,y;

 x = (unsigned long)&HWI_STKBOTTOM; /* assign x the address of the stack start */
 y = (unsigned long)&HWI_STKTOP; /* assign x the address of the stack end */
}

Note that when the address (32 bits) of HWI_STKTOP is assigned to the variable x, one must
typecast the address to an unsigned long since &HWI_STKTOP is of the type unsigned 16-bit
integer pointer, but x is of type unsigned long.

The C function STKOV_initSystemStack() described in Appendix A and found in Appendix B.1
will configure and enable a watchpoint to monitor for overflow of the C/C++ stack. This function
can be directly incorporated into user code.

4.2 DSP/BIOS Applications

DSP/BIOS employs multiple stacks. Hardware interrupts (HWIs) and software interrupts (SWIs)
use the system stack, which is analogous to the single stack employed by non-DSP/BIOS
C/C++ applications. A single watchpoint statically configured will effectively handle overflow
detection for the system stack. The DSP/BIOS configuration tool generates a linker command
file that defines global variables for the stack start and end addresses: HWI_STKBOTTOM and
HWI_STKTOP, respectively (accurate as of Code Composer Studio v2.20). These symbols can
be used with the C function STKOV_initSystemStack() as described in Section 4.1.

DSP/BIOS tasks (TSKs) each have their own stack. When the DSP/BIOS scheduler prepares to
run a task, it changes the SP to point to the stack of that task. Therefore, a static configuration
of a watchpoint will not suffice here. Instead, the remaining C28x watchpoint must be
dynamically reconfigured to monitor the stack of whichever task is active at the moment (recall
that there are two available watchpoints on the C28x, and one is already in use to monitor the
system stack).

DSP/BIOS provides support for this dynamic reconfiguration in the form of the task switch hook
function. The task switch hook function is specified by the user and is run each time a task
switch occurs. DSP/BIOS passes to this function a handle (i.e., a pointer) for the task being
switched to. Using this handle, the switch hook function can access information about the stack
starting address and length for the task, and then dynamically change the watchpoint to monitor
this stack.

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 15

Some static computations are also useful for task stack monitoring in order to avoid repeatedly
calculating unchanging values in the task switch hook function (which would impact the cycle
efficiency of the switch function). Specifically, the address at which the watchpoint should be set
for each task needs to be calculated only once. The address information must then be stored in
the environment of the task†. DSP/BIOS provides support for the static computations in the form
of the task create hook function. Performing the watchpoint address calculation once at task
creation time provides for a more cycle efficient task switch hook function.

Figure 3 shows how to specify the task switch hook and task create hook functions in the
DSP/BIOS configuration tool. More information on DSP/BIOS hook functions can be found in
the online help within Code Composer Studio.

Figure 3. Specifying the Task Hook Functions in Code Composer Studio v2.20

� All DSP/BIOS task objects contain a pointer to the environment of that task. The task environment is a user defined global
data structure. To implement the task stack overflow detection scheme herein described, it could be required that the
environment of each task contain the watchpoint address as one of the elements. However, since only a single environment
element is needed for each task (i.e., the watchpoint address), it is most efficient to use the environment pointer itself as the
actual value. In other words, the environment pointer of each task object is assigned a value equal to the watchpoint address
for the task. Additional environment space is therefore not needed, and the task switch function is also more efficient since
the watchpoint address is easily accessed as the environment pointer of the task object. This is the approach used by the
code provided in this application report. If the reader's application requires use of the task environment, the code presented
in this report is easily modified to allow for this.

Check
this box

Enter switch function name
here, e.g.,

_STKOV_switchTaskStack

Note the use of the leading
underscore.

Enter create function name
here, e.g.,

_STKOV_createTaskStack

Note the use of the leading
underscore.

SPRA820

16 Online Stack Overflow Detection on the TMS320C28x DSP

The C functions STKOV_createTaskStack(), STKOV_initTaskStack(), and
STKOV_switchTaskStack() described in Appendix A and found in Appendix B.2 will configure
and enable a watchpoint to monitor for overflow of DSP/BIOS task stacks. These functions can
be directly incorporated into user code. STKOV_createTaskStack() is the task create hook
function, STKOV_switchTaskStack() is the task switch hook function, and
STKOV_initTaskStack() performs some required static initialization before either of the other two
functions can be run.

If the RTOSINT is triggered by stack overflow, and both the system stack and task stacks are
being monitored, the user might want to determine which stack overflowed in the RTOSINT ISR
order to take appropriate corrective action. Unfortunately, there is no hardware flag available
that differentiates between WP0 and WP1. Instead, one approach would be to read the SP in
the ISR, and then compare against the settings in the REFH and REFL registers for the two
watchpoints.

5 Conclusion

A method for online stack overflow detection on the TMS320C28x DSP has been presented.
The approach entails configuring an emulation analysis block watchpoint to monitor bus activity
in an address range near the end of a stack. For non-DSP/BIOS application code, a single,
statically configured watchpoint monitoring the C stack is sufficient. For DSP/BIOS application
code, two watchpoints are needed: a static watchpoint for the system static, and a dynamically
re-configured watchpoint to monitor task stacks. The task stack watchpoint is reconfigured
using the task switch hook function of DSP/BIOS. C-source code has been provided that
contains functions for implementing the overflow detection.

6 References

1. TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430)

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 17

Appendix A. C Function APIs

 STKOV_initSystemStack Initialization function for monitoring the system (C/C++) stack

Source File stkov_systemstack.c

Include Files stkov.h

Function Prototype unsigned int error STKOV_initSystemStack(
 unsigned long stackStartAddr,
 unsigned long stackEndAddr,
 unsigned int margin);

Arguments stackStartAddr: Address of first word in stack.
 stackEndAddr: Address of first word after the last word in the stack.
 For example, if the stack starts at 0x100, and is of
 length 0x80, then stackEndAddr = 0x180.
 margin: The minimum number of words before StackEndAddr
 to set the watchpoint at.

Return Value error: 0 = no error
 1 = software failed to gain control of the watchpoint
 2 = watchpoint range falls outside the stack

Description This function configures and enable a watchpoint to monitor the system
stack (for DSP/BIOS applications) or the C/C++ stack (for non-DSP/BIOS
applications). It also enables the RTOSINT interrupt. The function
should be called once during system initialization, generally in main().

 The source file contains two #define constants that affect this function.
These constants may be changed if desired. The constants are:

 WP: The watchpoint to use (valid values are 0 or 1).
 Default value is 0. If only one watchpoint is in use for
 stack monitoring (e.g., task stack monitoring is not
 being used), it is recommended to use WP = 0 since
 the Code Composer Studio debugger uses watchpoint
 1 for numerous debug features. Note that the
 watchpoints used for system and task stack monitoring
 must be different.

 STKOV_RANGEMASK:
 Mask specifying the range covered by the watchpoint.
 Default is 0x0007 (range is 8 words). Note that
 the value must be (2^N -1) in form, e.g., 0x0001,
 0x0003, 0x0007, 0x000F, 0x001F, etc.

 If any value other than 0 is returned, it means that the watchpoint was not
enabled.

SPRA820

18 Online Stack Overflow Detection on the TMS320C28x DSP

Example #define margin 45
 extern unsigned int HWI_STKBOTTOM, HWI_STKTOP;
 unsigned int error;
 error = STKOV_initSystemStack((Uint32)&HWI_STKBOTTOM,
 (Uint32)&HWI_STKTOP,
 margin);

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 19

 STKOV_createTaskStack DSP/BIOS task create hook function for task stack monitoring

Source File stkov_taskstack.c

Include Files stkov.h

Function Prototype void STKOV_createTaskStack(TSK_Handle task);

Arguments task: Handle for the task being created.

Return Value none

Description This function computes the address that the watchpoint should be set to
for monitoring the stack of a task. It should be setup to serve as the
DSP/BIOS task create hook function using the DSP/BIOS Configuration
tool. DSP/BIOS will then execute this function each time a task is
created.

 The source file contains two #define constants that affect this function.
These constants may be changed if desired. The constants are:

 STKOV_MARGIN:
 The minimum number of words before the end of the
 task stack to set the watchpoint at. Default is 45.

 STKOV_RANGEMASK:
 Mask specifying the range covered by the watchpoint.
 Default value is 0x0007 (range is 8 words). Note that
 the value must be (2^N -1) in form, e.g., 0x0001,
 0x0003, 0x0007, 0x000F, 0x001F, etc.

Example Not applicable. This function should be specified as the DSP/BIOS task
create hook function inside Code Composer Studio.

SPRA820

20 Online Stack Overflow Detection on the TMS320C28x DSP

 STKOV_initTaskStack Initialization function for monitoring the DSP/BIOS task stacks

Source File stkov_taskstack.c

Include Files stkov.h

Function Prototype unsigned int error STKOV_InitTaskStack(void);

Arguments none

Return Value error: 0 = no error
 1 = software failed to gain control of the watchpoint

Description This function reserves a watchpoint to monitor the DSP/BIOS task
stacks. It also configures the static portion of the watchpoint, and enables
the RTOSINT. This function should be called once during system
initialization (before any DSP/BIOS tasks are executed), generally in
main().

 The source file contains two #define constants that affect this function.
These constants may be changed if desired. The constants are:

 WP: The watchpoint to use (valid values are 0 or 1).
 Default value is 0. If only one watchpoint is in use for
 stack monitoring (e.g., system stack monitoring is not
 being used), it is recommended to use WP = 0 since
 the Code Composer Studio debugger uses watchpoint
 1 for numerous debug features. Note that the
 watchpoints used for system and task stack monitoring
 must be different.

 STKOV_RANGEMASK:
 Mask specifying the range covered by the watchpoint.
 Default value is 0x0007 (range is 8 words). Note that
 the value must be (2^N -1) in form, e.g., 0x0001,
 0x0003, 0x0007, 0x000F, 0x001F, etc.

Example unsigned int error;
 error = STKOV_initTaskStack();

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 21

 STKOV_switchTaskStack DSP/BIOS task switch hook function for task stack monitoring

Source File stkov_taskstack.c

Include Files stkov.h
 std.h (part of the TI C compiler runtime support library)
 tsk.h (part of the TI DSP/BIOS software)

Function Prototype void STKOV_switchTaskStack(TSK_Handle oldtask,
 TSK_Handle newtask);

Arguments oldtask: Handle to old task (task being switched from)
 newtask: Handle to new task (task being switched to)

Return Value none

Description This function switches a watchpoint to monitor the stack of the new task.
It should be setup to serve as the DSP/BIOS task switch hook function
using the DSP/BIOS Configuration tool. DSP/BIOS will then execute this
function each time a task switch occurs.

 The source file contains one #define constant that affects this function.
This constant may be changed if desired. The constant is:

 WP: The watchpoint to use (valid values are 0 or 1).
 Default value is 0. If only one watchpoint is in use for
 stack monitoring (e.g., system stack monitoring is not
 being used), it is recommended to use WP = 0 since
 the Code Composer Studio debugger uses watchpoint
 1 for numerous debug features. Note that the
 watchpoints used for system and task stack monitoring
 must be different.

 Note that this function has been carefully written to use as little stack
space as possible (by using few local variables and by using immediate
valued pointers). This is motivated by that fact that this function will use
the stack from the old task. Therefore, every task stack will need to be of
sufficient size to handle needs of this switch function, in addition to
everything else that goes on the task stack (e.g., the tasks local context,
hardware interrupt context switching, etc.). This function has also been
written to be as cycle efficient as possible (since it is run each time a task
is switched). The cycle count of this function, including the function call
and return, is approximately 60 cycles (with or without compiler
optimization). Some additional overhead (e.g. maybe 10 to 20 cycles) in
the DSP/BIOS scheduler is also incurred since it passes two parameters
to this function.

Example Not applicable. This function should be specified as the DSP/BIOS task
switch hook function inside Code Composer Studio.

SPRA820

22 Online Stack Overflow Detection on the TMS320C28x DSP

Appendix B. C Code Functions

B.1 stkov_systemstack.c

/***
* File: stkov_systemstack.c *
* Device: TMS320C28x *
* Author: David M. Alter, Texas Instruments Inc. *
* History: *
* May 1, 2003 - Original (D. Alter) *
***/
/***
* THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR *
* REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING *
* ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS OF *
* RESPONSES, RESULTS AND LACK OF NEGLIGENCE. TI DISCLAIMS ANY *
* WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, AND *
* NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS *
* WITH REGARD TO THE PROGRAM OR YOUR USE OF THE PROGRAM. *
* *
* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL, *
* CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY *
* OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE *
* POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF THIS *
* AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM. EXCLUDED *
* DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR *
* REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS *
* OF PROFITS, LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF *
* BUSINESS. IN NO EVENT WILL TI'S AGGREGATE LIABILITY UNDER THIS *
* AGREEMENT OR ARISING OUT OF YOUR USE OF THE PROGRAM EXCEED FIVE *
* HUNDRED DOLLARS U.S.$500). *
* *
* Unless otherwise stated, the Program written and copyrighted by *
* Texas Instruments is distributed as "freeware". You may, only *
* under TI's copyright in the Program, use and modify the Program *
* without any charge or restriction. You may distribute to third *
* parties, provided that you transfer a copy of this license to the *
* third party and the third party agrees to these terms by its first *
* use of the Program. You must reproduce the copyright notice and *
* any other legend of ownership on each copy or partial copy, of the *
* Program. *
* *
* You acknowledge and agree that the Program contains copyrighted *
* material, trade secrets and other TI proprietary information and *
* is protected by copyright laws, international copyright treaties, *
* and trade secret laws, as well as other intellectual property *
* laws. To protect TI's rights in the Program, you agree not to *
* decompile, reverse engineer, disassemble or otherwise translate *
* any object code versions of the Program to a human-readable form. *
* You agree that in no event will you alter, remove or destroy any *
* copyright notice included in the Program. TI reserves all rights *
* not specifically granted under this license. Except as *
* specifically provided herein, nothing in this agreement shall be *
* construed as conferring by implication, estoppel, or otherwise, *
* upon you, any license or other right under any TI patents, *
* copyrights or trade secrets. *
* *
* You may not use the Program in non-TI devices. *
***/

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 23

// Choose which watchpoint to use (User configurable)
#define WP 0 // Valid values are 0 or 1 (Default is 0)

// Address and value definitions for Emulation Watchpoint Registers
#if WP == 0
 #define WP_MASK (volatile unsigned long *)0x00000848 // WP0 MASK register addr
 #define WP_REF (volatile unsigned long *)0x0000084A // WP0 REF register addr
 #define WP_EVT_CNTL (volatile unsigned int *)0x0000084E // WP0 EVT_CNTL register addr
 #define WP_EVT_ID (volatile unsigned int *)0x0000084F // WP0 EVT_ID register addr
 #define EVT_CNTL 0x080A // EVT_CNTL value for WP0
#else
 #define WP_MASK (volatile unsigned long *)0x00000828 // WP1 MASK register addr
 #define WP_REF (volatile unsigned long *)0x0000082A // WP1 REF register addr
 #define WP_EVT_CNTL (volatile unsigned int *)0x0000082E // WP1 EVT_CNTL register addr
 #define WP_EVT_ID (volatile unsigned int *)0x0000082F // WP1 EVT_ID register addr
 #define EVT_CNTL 0x081A // EVT_CNTL value for WP1
#endif

#define STKOV_RANGEMASK 0x0007 // 0x0007 = trigger range is 8 words

// Other Definitions
extern cregister volatile unsigned int IER;

/***
* Function: STKOV_initSystemStack() *
* Description: Configures a hardware watchpoint to trigger an *
* RTOSINT on write access in a specified range at the end of the *
* system (or C/C++) stack. *
* DSP: TMS320C28x *
* Include files: none *
* Function Prototype: *
* unsigned int STKOV_initSystemStack(*
* unsigned long, unsigned long, unsigned int); *
* Usage: error = STKOV_initSystemStack(*
* stackStartAddr, stackEndAddr, margin); *
* Input Parameters: *
* unsigned long stackStartAddr = Address of first word in stack. *
* unsigned long stackEndAddr = Address of first word after last *
* word in stack. For example, if the stack starts at 0x100, and *
* is of length 0x80, then StackEndAddr = 0x180. *
* unsigned int margin = The minimum number of words before *
* stackEndAddr that the watchpoint is to be set at. *
* Return Value: *
* unsigned int error: *
* 0 = no error *
* 1 = software failed to gain control of the WP *
* 2 = the watchpoint range falls outside the stack *
* Notes: *
* 1) If any value other than 0 is returned, it means that the *
* overflow detection was not enabled. *
***/
unsigned int STKOV_initSystemStack(unsigned long stackStartAddr,
 unsigned long stackEndAddr,
 unsigned int margin)
{
unsigned long addr; // Address to set the WP at

// Compute starting address of watchpoint range
 addr = (stackEndAddr - margin) & (unsigned long)(~STKOV_RANGEMASK);

SPRA820

24 Online Stack Overflow Detection on the TMS320C28x DSP

// Check to be sure the watchpoint range falls within the stack.
 if(addr < stackStartAddr) // Check if range underruns the stack start
 return(2); // Return error code
 if(addr > stackEndAddr) // Catch arithmetic underflow
 return(2); // Return error code

// Enable EALLOW protected register access
 asm(" EALLOW");

// Attempt to gain control of the watchpoint
 *WP_EVT_CNTL = 0x0001; // Write 0x0001 to EVT_CNTL to claim ownership
 // of the watchpoint
 asm(" RPT #1 || NOP"); // Wait at least 3 cycles for the write to occur

// Confirm that the application owns the watchpoint
 if((*WP_EVT_ID & 0xC000) != 0x4000) // Software failed to gain control of watchpoint
 {
 asm(" EDIS"); // Disable EALLOW protected register access
 return(1); // Return error code
 }

// Proceed to configure the watchpoint
 *WP_MASK = (unsigned long)STKOV_RANGEMASK; // Watchpoint reference address mask
 *WP_REF = addr | (unsigned long)STKOV_RANGEMASK; // Watchpoint reference address
 // (write all masked bits as 1's)
 *WP_EVT_CNTL = EVT_CNTL; // Enable the watchpoint
 IER |= 0x8000; // Enable RTOSINT

// Successful Return
 asm(" EDIS"); // Disable EALLOW protected register access
 return(0); // Return with no error

} //end of STKOV_initSystemStack()

// end of file stkov_systemstack.c

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 25

B.2 stkov_taskstack.c

/***
* File: stkov_taskstack.c *
* Device: TMS320C28x *
* Author: David M. Alter, Texas Instruments Inc. *
* History: *
* May 1, 2003 - Original (D. Alter) *
***/
/***
* THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR *
* REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING *
* ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS OF *
* RESPONSES, RESULTS AND LACK OF NEGLIGENCE. TI DISCLAIMS ANY *
* WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, AND *
* NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS *
* WITH REGARD TO THE PROGRAM OR YOUR USE OF THE PROGRAM. *
* *
* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL, *
* CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY *
* OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE *
* POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF THIS *
* AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM. EXCLUDED *
* DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR *
* REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS *
* OF PROFITS, LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF *
* BUSINESS. IN NO EVENT WILL TI'S AGGREGATE LIABILITY UNDER THIS *
* AGREEMENT OR ARISING OUT OF YOUR USE OF THE PROGRAM EXCEED FIVE *
* HUNDRED DOLLARS U.S.$500). *
* *
* Unless otherwise stated, the Program written and copyrighted by *
* Texas Instruments is distributed as "freeware". You may, only *
* under TI's copyright in the Program, use and modify the Program *
* without any charge or restriction. You may distribute to third *
* parties, provided that you transfer a copy of this license to the *
* third party and the third party agrees to these terms by its first *
* use of the Program. You must reproduce the copyright notice and *
* any other legend of ownership on each copy or partial copy, of the *
* Program. *
* *
* You acknowledge and agree that the Program contains copyrighted *
* material, trade secrets and other TI proprietary information and *
* is protected by copyright laws, international copyright treaties, *
* and trade secret laws, as well as other intellectual property *
* laws. To protect TI's rights in the Program, you agree not to *
* decompile, reverse engineer, disassemble or otherwise translate *
* any object code versions of the Program to a human-readable form. *
* You agree that in no event will you alter, remove or destroy any *
* copyright notice included in the Program. TI reserves all rights *
* not specifically granted under this license. Except as *
* specifically provided herein, nothing in this agreement shall be *
* construed as conferring by implication, estoppel, or otherwise, *
* upon you, any license or other right under any TI patents, *
* copyrights or trade secrets. *
* *
* You may not use the Program in non-TI devices. *
***/

SPRA820

26 Online Stack Overflow Detection on the TMS320C28x DSP

/*** Include Files ***/
#include <std.h>
#include <tsk.h>

// Choose which watchpoint to use (User configurable)
#define WP 1 // Valid values are 0 or 1 (Default is 1)

// Address and value definitions for Emulation Watchpoint Registers
#if WP == 0
 #define WP_MASK (volatile unsigned long *)0x00000848 // WP0 MASK register addr
 #define WP_REF (volatile unsigned long *)0x0000084A // WP0 REF register addr
 #define WP_EVT_CNTL (volatile unsigned int *)0x0000084E // WP0 EVT_CNTL register addr
 #define WP_EVT_ID (volatile unsigned int *)0x0000084F // WP0 EVT_ID register addr
 #define EVT_CNTL 0x080A // EVT_CNTL value for WP0
#else
 #define WP_MASK (volatile unsigned long *)0x00000828 // WP1 MASK register addr
 #define WP_REF (volatile unsigned long *)0x0000082A // WP1 REF register addr
 #define WP_EVT_CNTL (volatile unsigned int *)0x0000082E // WP1 EVT_CNTL register addr
 #define WP_EVT_ID (volatile unsigned int *)0x0000082F // WP1 EVT_ID register addr
 #define EVT_CNTL 0x081A // EVT_CNTL value for WP1
#endif

#define STKOV_MARGIN 45 // Trigger margin is 45 words
#define STKOV_RANGEMASK 0x0007 // 0x0007 = trigger range is 8 words

/*** Other Definitions ***/
extern cregister volatile unsigned int IER;

/***
* Function: STKOV_createTaskStack() *
* Description: Retrieves a tasks stack start address and length, and *
* places these into the tasks environment. This function is *
* designed to be the task create hook function in DSP/BIOS. *
* DSP: TMS320C28x *
* Include files: std.h, tsk.h *
* Function Prototype: *
* void STKOV_createTaskStack(TSK_Handle); *
* Usage: STKOV_switchTaskStack(task); *
* Input Parameters: *
* TSK_Handle task = handle to task. *
* Return Value: none *
* Notes: *
***/
void STKOV_createTaskStack(TSK_Handle task)
{
static TSK_Stat status;
unsigned long addr; // Address to set the WP at

// Get the task attributes
 TSK_stat(task, &status);

// Compute the watchpoint start address
 addr = ((unsigned long)status.attrs.stack
 + (unsigned long)status.attrs.stacksize - STKOV_MARGIN)
 & (~STKOV_RANGEMASK);

// Assign 'addr' as the value of the task environment pointer
// Note: the environment pointer is not pointing to 'addr'. Rather,
// the value of the environment pointer is set equal to 'addr'.
 TSK_setenv(task, (unsigned int *)addr);

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 27

// Successful Return

} //end of STKOV_createTaskStack()

/***
* Function: STKOV_initTaskStack() *
* Description: Initialization for the DSP/BIOS task switch hook *
* function "STKOV_switchTaskStackOvDetect()". Run this function *
* once in main(). *
* DSP: TMS320C28x *
* Include files: none *
* Function Prototype: unsigned int STKOV_initTaskStackOvDetect(void);*
* Usage: error = STKOV_initTaskStackOvDetect(); *
* Input Parameters: none *
* Return Value: *
* unsigned int error: *
* 0 = no error *
* 1 = software failed to gain control of the WP *
* Notes: *
***/
unsigned int STKOV_initTaskStack(void)
{
// Enable EALLOW protected register access
 asm(" EALLOW");

// Attempt to gain control of the watchpoint
 *WP_EVT_CNTL = 0x0001; // Write 0x0001 to EVT_CNTL to claim ownership
 // of the watchpoint
 asm(" RPT #1 || NOP"); // Wait at least 3 cycles for the write to occur

// Confirm that the application owns the watchpoint
 if((*WP_EVT_ID & 0xC000) != 0x4000) // Software failed to gain control of watchpoint
 {
 asm(" EDIS"); // Disable EALLOW protected register access
 return(1); // Return error code
 }

// Proceed to configure the static portion of the watchpoint
 *WP_MASK = (unsigned long)STKOV_RANGEMASK; // Watchpoint reference address mask
 IER |= 0x8000; // Enable RTOSINT

// Successful Return
 asm(" EDIS"); // Disable EALLOW protected register access
 return(0); // Return with no error

} //end of STKOV_initTaskStack()

/***
* Function: STKOV_switchTaskStack() *
* Description: Configures a hardware watchpoint to trigger an *
* RTOSINT on write access at the end of a TSK stack. This *
* function is designed to be the task switch hook function in *
* DSP/BIOS. *
* DSP: TMS320C28x *
* Include files: std.h, tsk.h *
* Function Prototype: *
* void STKOV_switchTaskStack(TSK_Handle, TSK_Handle); *
* Usage: STKOV_switchTaskStack(oldtask, newtask); *

SPRA820

28 Online Stack Overflow Detection on the TMS320C28x DSP

* Input Parameters: *
* TSK_Handle oldtask = handle to old task. *
* TSK_Handle newtask = handle to new task. *
* Return Value: none *
* Notes: *
* 1) The function STKOV_initTaskStack() must be run once *
* before this function can be run. *
* 2) The function STKOV_createTaskStack() must have been used as *
* the task create hook function. *
***/
void STKOV_switchTaskStack(TSK_Handle oldtask, TSK_Handle newtask)
{
unsigned long addr; // Address to set the WP at

// Retrieve 'addr' from the task environment pointer
 addr = (unsigned long)TSK_getenv(newtask);

// Enable EALLOW protected register access
 asm(" EALLOW");

// Disable the already owned watchpoint
 *WP_EVT_CNTL = 0x0001;

// Proceed to configure the dynamic portion of the watchpoint
 *WP_REF = addr | (unsigned long)STKOV_RANGEMASK; // Watchpoint reference address
 // (write all masked bits as 1's)

// Enable the watchpoint
 *WP_EVT_CNTL = EVT_CNTL;

// Successful Return
 asm(" EDIS"); // Disable EALLOW protected register access

} //end of STKOV_switchTaskStack()

// end of file stkov_taskstack.c

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 29

B.3 stkov.h

/***
* File: stkov.h *
* Device: TMS320C28x *
* Author: David M. Alter, Texas Instruments Inc. *
* Description: Include file for StackOverflow.c *
* History: *
* May 1, 2003 - Original (D. Alter) *
***/
/***
* THIS PROGRAM IS PROVIDED "AS IS". TI MAKES NO WARRANTIES OR *
* REPRESENTATIONS, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING *
* ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A *
* PARTICULAR PURPOSE, LACK OF VIRUSES, ACCURACY OR COMPLETENESS OF *
* RESPONSES, RESULTS AND LACK OF NEGLIGENCE. TI DISCLAIMS ANY *
* WARRANTY OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, AND *
* NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS *
* WITH REGARD TO THE PROGRAM OR YOUR USE OF THE PROGRAM. *
* *
* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, INCIDENTAL, *
* CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY *
* OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE *
* POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF THIS *
* AGREEMENT, THE PROGRAM, OR YOUR USE OF THE PROGRAM. EXCLUDED *
* DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR *
* REINSTALLATION, COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS *
* OF PROFITS, LOSS OF SAVINGS, OR LOSS OF USE OR INTERRUPTION OF *
* BUSINESS. IN NO EVENT WILL TI'S AGGREGATE LIABILITY UNDER THIS *
* AGREEMENT OR ARISING OUT OF YOUR USE OF THE PROGRAM EXCEED FIVE *
* HUNDRED DOLLARS U.S.$500). *
* *
* Unless otherwise stated, the Program written and copyrighted by *
* Texas Instruments is distributed as "freeware". You may, only *
* under TI's copyright in the Program, use and modify the Program *
* without any charge or restriction. You may distribute to third *
* parties, provided that you transfer a copy of this license to the *
* third party and the third party agrees to these terms by its first *
* use of the Program. You must reproduce the copyright notice and *
* any other legend of ownership on each copy or partial copy, of the *
* Program. *
* *
* You acknowledge and agree that the Program contains copyrighted *
* material, trade secrets and other TI proprietary information and *
* is protected by copyright laws, international copyright treaties, *
* and trade secret laws, as well as other intellectual property *
* laws. To protect TI's rights in the Program, you agree not to *
* decompile, reverse engineer, disassemble or otherwise translate *
* any object code versions of the Program to a human-readable form. *
* You agree that in no event will you alter, remove or destroy any *
* copyright notice included in the Program. TI reserves all rights *
* not specifically granted under this license. Except as *
* specifically provided herein, nothing in this agreement shall be *
* construed as conferring by implication, estoppel, or otherwise, *
* upon you, any license or other right under any TI patents, *
* copyrights or trade secrets. *
* *
* You may not use the Program in non-TI devices. *
***/

SPRA820

30 Online Stack Overflow Detection on the TMS320C28x DSP

#ifndef STKOV_
#define STKOV_

#include <tsk.h>

// C++ Support
#ifdef __cplusplus
 extern "C" {
#endif

// Global Function Prototypes
extern unsigned int STKOV_initSystemStack(unsigned long, unsigned long, unsigned int);
extern void STKOV_createTaskStack(TSK_Handle);
extern unsigned int STKOV_initTaskStack(void);
extern void STKOV_switchTaskStack(TSK_Handle, TSK_Handle);

// Global symbols defined in the linker command file
extern unsigned int HWI_STKBOTTOM;
extern unsigned int HWI_STKTOP;

#ifdef __cplusplus
 }
#endif

#endif // end of STKOV_ #ifndef

// end of file stkov.h

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 31

Appendix C. Troubleshooting Analysis Block Resource Conflicts

Code Composer Studio (including DSP/BIOS) makes use of the emulation analysis block
resources for various debugging features. Conflicts can therefore arise when software attempts
to gain ownership of a watchpoint for stack overflow monitoring. This section presents the most
likely reasons for a resource conflict with Code Composer Studio, and indicates what action is
needed to eliminate the conflict.

It is important to understand that each analysis unit resource can be used either by Code
Composer Studio or by the stack overflow detection software, but not by both. Therefore, some
debugging capabilities will need to be sacrificed if the stack overflow detection software is made
operational during debug. The obvious solution to this problem is to enable the stack overflow
detection near the end of the software development cycle (after the major debug and
development work is completed). One simply needs to comment out the function calls to
STKOV_initSystemStack() and STKOV_initTaskStack() from their code. The task switch hook
function STKOV_switchTaskStack() and the task create hook function
STKOV_createTaskStack() can be left designated as the task hook functions in DSP/BIOS. The
application will consume the same execution cycles as before (which is important for application
benchmarking and real-time requirements debug), but will have no effect on the watchpoint
configuration registers since ownership of the task stack monitoring watchpoint was not secured
in the STKOV_initTaskStack() function.

C.1 Hardware Breakpoints

A hardware breakpoint monitors the program address bus and causes a CPU halt when the
address bus matches a configured value. This can be differentiated from a software breakpoint,
where a special emulation halt instruction is actually inserted into the code by the debugger in
place of the instruction previously located at the specified address. Therefore, hardware
breakpoints are used when debugging in non-volatile memory (such as ROM or Flash), since a
software breakpoint cannot be used in read-only memory. On the C28x DSP, hardware
breakpoints utilize the same two emulation analysis units that watchpoints use.

If memory has been defined as read-only in the Code Composer Studio memory map, and a
breakpoint is set on code in that memory, Code Composer Studio will automatically use a
hardware breakpoint instead of a software breakpoint. This could cause the stack overflow
detection code to fail to gain control of the watchpoint resources. User configured breakpoints
can be examined within Code Composer Studio on the Debug->Breakpoints menu, Breakpoints
tab. Figure C-1 shows an example. The breakpoint at address 0x2000 is a software breakpoint,
whereas the breakpoint at address 0x1000 is a hardware breakpoint, and is clearly denoted by
"H/W Break." If a resource conflict arises, one should disable any hardware breakpoints.

SPRA820

32 Online Stack Overflow Detection on the TMS320C28x DSP

Figure C-1. Hardware Breakpoints in Code Composer Studio v2.20

Code Composer Studio automatically sets two breakpoints at program load for a C/C++ program
that will not appear on the breakpoint menu: a CIO breakpoint, and an end of program
breakpoint. If these locations fall into flash memory, Code Composer Studio will use hardware
breakpoints. This could cause the stack overflow detection code to fail to gain control of the
watchpoint resources. You can instruct Code Composer Studio to not set these breakpoints by
deselecting the appropriate boxes on the Option->Customize menu, Program Load Options tab,
as shown in Figure C-2. More information on these two breakpoints may be found by clicking
the Help button on that tab from within Code Composer Studio.

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 33

Figure C-2. Automatic Breakpoint Setting Options in Code Composer Studio v2.20

C.2 Real-time Analysis Tools

The real-time analysis (RTA) features of DSP/BIOS use analysis unit #1, which will cause a
conflict with stack overflow detection code attempting to use watchpoint #1. To disable the RTA
tools and also remove all RTA code from your project, open your project configuration file (i.e.,
the *.cdb file) inside Code Composer Studio, open the Input/Output properties tree, then right-
click the RTDX - Real-time Data Exchange Settings and select properties. Uncheck the
Enable Real-time Data Exchange (RTDX) box, as shown in Figure C-3.

Uncheck
these boxes
to disable the
setting of the
automatic
breakpoints

SPRA820

34 Online Stack Overflow Detection on the TMS320C28x DSP

Figure C-3. DSP/BIOS RTDX Control Window in Code Composer Studio v2.20

Alternately, one can disable the RTA tools at runtime (but leave the RTDX/RTA code in the
project). To do this, open the DSP/BIOS->RTA_Control_Panel menu in Code Composer Studio,
as shown in Figure C-4, and uncheck the Global host enable box.

1. Right-
click and
select
Properties

2. Uncheck
this box to
disable
RTDX and
remove all
RTA code
from the
project.

SPRA820

 Online Stack Overflow Detection on the TMS320C28x DSP 35

Figure C-4. RTA Control Panel in Code Composer Studio v2.20

C.3 Code Profiler

The Code Composer Studio code profiler uses analysis unit #1, which will cause a conflict with
stack overflow detection code attempting to use watchpoint #1. You can disable the profiler
clock on the Profiler menu within Code Composer Studio.

C.4 Resetting the Emulator

In some cases, it may be necessary to reset the emulation link after disabling the Code
Composer Studio feature causing the resource conflict. This is because Code Composer Studio
does not necessarily relinquish control of the analysis unit resource when the offending feature
is disabled. To reset the emulation link, select Debug->Reset_Emulator from within Code
Composer Studio.

CAUTION:

The Code Composer Studio debugger will generally take control of any emulation
analysis resource it wants regardless of whether the application currently owns the
resource or not. The user should be aware of this when performing debug. The
stack overflow code may be working just fine one minute, but then, for example, if
the user sets a hardware breakpoint or enables the profiler, Code Composer Studio
will take control of the analysis units and not provide any warning.

Uncheck
this box to
disable
DSP/BIOS
RTA tools.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI�s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI�s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third�party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of
this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. TI is not responsible or liable for any such statements.

 Mailing Address:

 Texas Instruments
 Post Office Box 655303
 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

